available structures
1A3K : bGal14GlcNAc1KJL : bGal14GlcNAc1KJR : derivative of LacNAc2NMN : bGal14Glc2NMO : bGal14Glc2NN8 : bGal14Glc2XG3 : benzamido-N-acetyllactosamine3AYA : bGal13aGalNAc-Ser3AYD : bGal13aGalNAc-PNP3AYE : bGal14Glc3T1L : MQT3T1M : DQT3ZSJ : bGal14Glc3ZSK : no ligand3ZSL : no ligand3ZSM : no ligand4BLI : Thio di-galactoside derivative4BLJ : Thio di-galactoside derivative4BM8 : Thio di-galactoside derivative4JC1 : thiodigalactoside4JCK : thioditaloside4LBJ : bGal13GlcNAc13bGal14Glc4LBK : bGal14GlcNAc13bGal14Glc4LBL : aNeuAc23bGal14Glc4LBM : bGal13GlcNAc13bGal14Glc4LBN : bGal14GlcNAc13bGal14Glc4LBO : aNeuAc23bGal14Glc4R9A : bGal14Glc4R9B : bGal14Glc4R9C : bGal14Glc4R9D : bGal14Glc4RL7 : bGal14Glc4XBN : bGal13GlcNAc5E88 : thiodigalactoside derivative5E89 : thiodigalactoside derivative5E8A : thiodigalactoside derivative5EXO : galactose derivative5H9P : thiodigalactoside derivative5H9R : 3-deoxy-3-(4-[m-fluorophenyl]-5IUQ : no ligand5NF7 : LacNAc derivativee5NF9 : LacNAc derivative5NFA : LacNAc derivative5NFB : LacNAc derivative5NFC : GLYCEROL5OAX : no ligand5ODY : no ligand6B8K : no ligand6F2Q : no ligand6F6Y : no ligand6FK2 : Lactitol6FOF : bGal14Glc6I74 : no ligand6I75 : no ligand6I76 : no ligand6I77 : no ligand6I78 : no ligand6KXA : aGalA14GalA6KXB : aGalA14GalAa14GalA6Q0Q : Gal derivative6Q17 : Gal derivative6QGE : no ligand6QGF : no ligand6QLN : fluoroaryl triazole monothioga6QLO : substituted fluoroaryltriazol6QLP : substituted polyfluoroaryl mon6QLQ : fluoroaryltriazole monothiogal6QLR : fluoroaryltriazole monothioga6QLS : fluoroaryltriazole monothioga6QLT : fluoroaryltriazole monothiogal6QLU : fluoroaryltriazole monothiogal6RHL : galactose derivative (R enanti6RHM : galactose derivative (S-enanti6Y4C : bGal14Glc7BE3 : bGalNAc14GlcNAc

Lima C, Coelho H, Gimeno A, Trovão F, Diniz A, Dias J, Jiménez-Barbero J, Corzana F, Carvalho A, Cabrita E, Marcelo F.
Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins. Chemistry (Weinheim an der Bergstrasse, Germany) 2021

Zheng Y, Su J, Miller M, Geng J, Xu X, Zhang T, Mayzel M, Zhou Y, Mayo K, Tai G.
Topsy-turvy binding of negatively charged homogalacturonan oligosaccharides to galectin-3. Glycobiology 2020

Shilova A, Lebrette H, Aurelius O, Nan J, Welin M, Kovacic R, Ghosh S, Safari C, Friel R, Milas M, Matej Z, Högbom M, Brändén G, Kloos M, Shoeman R, Doak B, Ursby T, Håkansson M, Logan D, Mueller U.
Current status and future opportunities for serial crystallography at MAX IV Laboratory. Journal of synchrotron radiation 2020

Dussouy C, Kishor C, Lambert A, Lamoureux C, Blanchard H, Grandjean C.
Linear triazole-linked pseudo oligogalactosides as scaffolds for galectin inhibitor development. Chem Biol Drug Des 2020

Kumar R, Peterson K, Misini Ignjatović M, Leffler H, Ryde U, Nilsson U, Logan D.
Substituted polyfluoroaryl interactions with an arginine side chain in galectin-3 are governed by steric-, desolvation and electronic conjugation effects. Organic & biomolecular chemistry 2019

Verteramo M, Stenström O, Ignjatović M, Caldararu O, Olsson M, Manzoni F, Leffler H, Oksanen E, Logan D, Nilsson U, Ryde U, Akke M.
Interplay between Conformational Entropy and Solvation Entropy in Protein-Ligand Binding. Journal of the American Chemical Society 2019

Kumar R, Ignjatović M, Peterson K, Olsson M, Leffler H, Ryde U, Nilsson U, Logan D.
Structure and Energetics of Ligand-Fluorine Interactions with Galectin-3 Backbone and Side-Chain Amides: Insight into Solvation Effects and Multipolar Interactions. ChemMedChem 2019

Caldararu O, Kumar R, Oksanen E, Logan D, Ryde U.
Are crystallographic B-factors suitable for calculating protein conformational entropy? Physical chemistry chemical physics : PCCP 2019

Noresson A, Aurelius O, Öberg C, Engström O, Sundin A, Håkansson M, Stenström O, Akke M, Logan D, Leffler H, Nilsson U.
Designing interactions by control of protein-ligand complex conformation: tuning arginine-arene interaction geometry for enhanced electrostatic protein-ligand interactions. Chemical science 2018

Flores-Ibarra A, Vértesy S, Medrano F, Gabius H, Romero A.
Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Scientific reports 2018

Peterson K, Kumar R, Stenström O, Verma P, Verma P, Håkansson M, Kahl-Knutsson B, Zetterberg F, Leffler H, Akke M, Logan D, Nilsson U.
Systematic Tuning of Fluoro-galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity. Journal of medicinal chemistry 2018

Manzoni F, Wallerstein J, Schrader T, Ostermann A, Coates L, Akke M, Blakeley M, Oksanen E, Logan D.
Elucidation of Hydrogen Bonding Patterns in Ligand-Free, Lactose- and Glycerol-Bound Galectin-3C by Neutron Crystallography to Guide Drug Design. Journal of medicinal chemistry 2018

Atmanene C, Ronin C, Téletchéa S, Gautier F, Djedaïni-Pilard F, Ciesielski F, Vivat V, Grandjean C.
Biophysical and structural characterization of mono/di-arylated lactosamine derivatives interaction with human galectin-3. Biochemical and biophysical research communications 2017

Delaine, T., Collins, P., MacKinnon, A., Sharma, G., Stegmayr, J., Rajput, V.K., Mandal, S., Cumpstey, I., Larumbe, A., Salameh, B.A., Kahl-Knutsson, B., van Hattum, H., van Scherpenzeel, M., Pieters, R.J., Sethi, T., Schambye, H., Oredsson, S., Leffler, H., Blanchard, H., Nilsson, U.J.
Galectin-3-Binding Glycomimetics that Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. ChemBioChem 2016

Rajput, V.K., MacKinnon, A., Mandal, S., Collins, P., Blanchard, H., Leffler, H., Sethi, T., Schambye, H., Mukhopadhyay, B., Nilsson, U.J.
A Selective Galactose-Coumarin-Derived Galectin-3 Inhibitor Demonstrates Involvement of Galectin-3-glycan Interactions in a Pulmonary Fibrosis Model. J. Med. Chem. 2016

Hsieh T, Lin H, Tu Z, Lin T, Wu S, Tseng Y, Liu F, Hsu S, Lin C.
Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Scientific reports 2016

Su, J., Zhang, T., Wang, P., Liu, F., Tai, G., Zhou, Y.
The water network in galectin-3 ligand binding site guides inhibitor design. Acta Biochim. Biophys. Sin. 2015

Hsieh, T.J., Lin, H.Y., Tu, Z., Huang, B.S., Wu, S.C., Lin, C.H.
Structural Basis Underlying the Binding Preference of Human Galectins-1, -3 and -7 for Galβ1-3/4GlcNAc. PLoS One 2015

Collins, P.M., Bum-Erdene, K., Yu, X., Blanchard, H
Galectin-3 interactions with glycosphingolipids. J. Mol. Biol. 2014

Bum-Erdene K, Gagarinov IA, Collins PM, Winger M, Pearson AG, Wilson JC, Leffler H, Nilsson UJ, Grice ID, Blanchard H.
Investigation into the feasibility of thioditaloside as a novel scaffold for galectin-3-specific inhibitors ChemBioChem 2013

Collins PM, Oberg CT, Leffler H, Nilsson UJ, Blanchard H.
Taloside Inhibitors of Galectin-1 and Galectin-3. Chem. Biol. Drug Des. 2012

Saraboji K, Hakansson M, Genheden S, Diehl C, Qvist J, Weininger U, Nilsson UJ, Leffler H, Ryde U, Akke M, Logan DT
The carbohydrate-binding site in galectin-3 is pre-organized to recognize a sugar-like framework of oxygens: ultra-high resolution structures and water dynamics. Biochemistry 2012

Bian CF, Zhang Y, Sun H, Li DF, Wang DC.
Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS One 2011

Diehl C, Engstrom O, Delaine T, Hakansson M, Genheden S, Modig K, Leffler H, Ryde U, Nilsson UJ, Akke M.
Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J. Am. Chem. Soc. 2010

Collins PM, Hidari KI, Blanchard H.
Slow diffusion of lactose out of galectin-3 crystals monitored by X-ray crystallography: possible implications for ligand-exchange protocols Acta Crystallogr. D Biol. Crystallogr. 2007

Sorme P, Arnoux P, Kahl-Knutsson B, Leffler H, Rini JM, Nilsson UJ
Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction J. Am. Chem. Soc. 2005

Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S.H., Rini, J.M.
X-Ray crystal structure of the human Galectin-3 carbohydrate recognition domain at 2.1-A resolution J. Biol. Chem. 1998

Noresson, A.L., Oberg, C.T., Engstrom, O., Hakansson, M., Logan, D.T., Leffler, H., Nilsson, U.J.
Controlling Protein Conformation Through Electronic Fine-Tuning of Arginine-Arene Interactions: Synthetic, Structural, and Biological Studies To be published.

Doran, S.M.C., Faba Rodriguez, R., Hemmings, A.M.
Ligand specificity at the D-site of human Galectin-3 Carbohydrate Recognition Domain To be published.

Kishor, C.
Crystal structure of Human galectin-3 CRD in complex with Lactulose

Andersen, M.C.F., Boos, I., Kinnaert, C., Awan, S.I., Pedersen, H.L., Kracun, S.K., Lanz, G., Rydahl, M.G., Kjaerulff, L., Hakansson, M., Kimbung, R., Logan, D.T., Gotfredsen, C.H., Willats, W.G.T., Clausen, M.H.
Beta-(1-4)-d-galactans: synthesis and binding interactions with galectin-3
Copyright Ⓒ UniLectin 2017-2020
CERMAV | CNRS | PIG | SIB | Terms of use
How to cite: F Bonnardel, J Mariethoz, S Salentin, X Robin, M Schroeder, S Perez, F Lisacek, A Imberty; UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands, Nucleic Acids Research, Nucleic Acids Research, Volume 47, Issue D1, 8 January 2019, Pages D1236–D1244, doi:10.1093/nar/gky832